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1 Setup for Solving the KPZ Equation

1.1 Kernel of the KPZ equation

Last time, we showed that if u ∈ Cα, then u ∗K ∈ Cα+β, where K is a function that has
the following properties:

(i) suppK ⊆ B1(0), and K is smooth off of 0.

(ii) |∂kK(x)| . |x|β−d−|k|.

For example, when K is the kernel of (−∆)−1 and d ≥ 3, then we have our estimate for
β = 2, except that its kernel c0|x|2−d is not of compact support. However, we can express
our kernel as K + K̂, with K as above and K̂ a smooth function so that u ∗ K̂ is smooth.
Moreover, instead of convolution, we can also integrate againsta kernel K(x, y), and for
our Schauder estimate, we need K to behave smoothly away from the diagonal, and near
the diagonal as above.

For our KPZ equation, we need a Schauder estimate for the operator (∂t −∆)−1. Its
kernel, K(x, t) := (4πt)−d/2e−|x|

2/(4t)
1{t>0} does not look like what we have had so far.

Though we can achieve a similar claim with identical proof, provided that we follow the
parabolic scaling, treating time as 2.

For one thing, we may use the metric

d((x, t), (y, s)) = |(x− y, t− s)|par = |x− y|+
√
|t− s|

and denote

ϕ̃δ(y,s)(x, t) =
1

δd+2
ϕ(x−yδ , t−s

δ2
),

where the ∼ means that we are using parabolic scaling. We can also discuss the size of a
multiindex by

k = (k1, . . . , kd, kd+1︸︷︷︸
time variable

), |k|par = k1 + · · ·+ kd + 2kd+1.
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With these conventions, we may take a kernel K(x, t) and assume

|∂kK(x, t)| . |(x, t)|β−(d+2)−|k|par
par .

Moreover, if α < 0, then C̃α(Rd+1) would consist of distributions F such that

[F ]α,K = sup
(x,t)∈K

sup
δ∈(0,1]

sup
ϕ∈Dr

|F (ϕ̃δ(x,t))|
δα

<∞.

In particular, we will have our Schauder estimate for such a kernel K, in the sense that if
u ∈ C̃α, then K ∗ u ∈ C̃α+β.

For example, the bound above holds for the heat kernelK(x, t) = (4πt)−d/2e−|x|
2/(4t)

1{t>0}
for β = 2. Here are some details:

t−d/2e
− 1

4
(
|x|√
t
)2

. (|x|+
√
t)2−(d+2) = (|x|+

√
t)−d =

(
|x|√
t

+ 1

)−d
t−d/2.

This is equivalent to

e−z
2/4 . (z + 1)−d, or (z + 1)d . ez

2/4.

Taking d
dt gives

t−d/2−1e
− 1

4
(
|x|√
t
)2

. (|x|+
√
t)−d−2 = (

√
t)−d−2

(
|x|√
t

+ 1

)−d−2
.

Then we can expand the left hand side to get that

t−d/2

t

|x|2

t
e
− 1

4
(
|x|√
t
)2

. (
√
t)−d−2

(
|x|√
t

+ 1

)−d−2
.

Then perform induction.

1.2 Regularity considerations for white noise

Return to the KPZ equation {
ht = ∆h+ |hx|2 + ξ

h(x, 0) = h0(x),

which can be written as
h = K ∗ h0 +K ∗ (|hx|2 + ξ),
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where ξ is the white noise. Let us examine the regularity of ξ. Recall that ξ(x, t) is
Gaussian with

E[ξ(ϕ)] = 0, E[(ξ(ϕ))2] =

∫
ϕ2 dx dt.

Hence,

E[(ξ(ϕ̃δ(x,s)))
2] =

∫
(ϕ̃δ(x,s))

2 dx dt

=

∫ (
1

δd+2

)2

ϕ(y−xδ , t−sδ ) dt dy

= δ−(d+2)

∫
ϕ2.

We learn that
(E[|ξ(ϕ̃δ(x,s))|

2]])1/2 = δ−(d+2)/2‖ϕ‖L2 ,

hence
(E[|ξ(ϕ̃δ(x,s))|

2q])1/(2q) = cqδ
−(d+2)/2‖ϕ‖L2 .

One can show that if ξ is any random Schwartz distribution with (E[(ξ(ϕ̃δ(x,s)))
2q])1/(2q) .

δ, then ξ ∈ Ĉ−α−1/(2q) as in Kolmogorov’s theorem. Accepting this for now, we learn
that |xi ∈ C̃−(d+2)/2−ε(Rd+1) for any ε > 0. Here, we are using parabolic scaling. As
a result, we can use our Schauder estimate to assert that if K is the heat kernel, then
K ∗ ξ ∈ C̃−d/2+1−ε =: C̃−d/2+1(Rd+1). For example, when d = 1, then K ∗ ξ ∈ C̃1/2−, which
really means C1/2− in space and C1/4− in time.

1.3 Strategy for solving the KPZ equation

We wish to solve the KPZ equation{
ht = ∆h+ |hx|2 + ξ + C

h(x, 0) = h0(x),

where we should really solve this as we vary the constant C. If we choose a smooth function
for ξ, then we can solve this equation classically. Let us write Sc(C, ξ, h0) for the classical
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solution. Here is the picture of what this will look like when with lift it:

Here is our strategy: We build a regularity structure that would allow us to solve the
KPZ equation in abstract space, once we have a recipe for the meaning of h2x so that this
abstract solution is indeed a continuous operator. However, we still need to build our
regularity structure. For this, let us now focus on our operator F 7→ F ∗K, where K is
the heat kernel. We claim that if our regularity structure (A,G, T ) is “rich enough,” then
we can build an operator K : CγM → C̃

γ+2
M such that

R(Kf) = K ∗ Rf.

Here, C̃γM = {f : Rd+1 →
⊕

α<γ Tα : |Γyxf(x) − f(y)| . |x − y|γ−αpar }, and we have the
reconstruction theorem:

Theorem 1.1 (Reconstruction theorem).

|(Rf −Πxf(x))(ϕ̃δx)| . δγ .

As a warm-up, first let us assume that the kernel K is smooth (no singularity at 0), and
assume that our regularity structure has a sector consisting of polynomials: a subspace T
of T such that Tn = 〈Xk : |k| = n〉. Then, since K ∗ F is smooth for any distribution F ,

(Kf)(a) =
∑
k

1

k!
(∂kK ∗ Rf)Xk.

Next time, we will cover the general case.
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